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• Stress Compatibility and Airy Stress Function

• Displacement 





• For zero heat sources and steady state, the heat onduction 

becomes Laplace equation 
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• With appropriate thermal BCs, i.e. specified 

temperature or heat flux, the temperature field can be 

determined independent of the stress-field calculations.

• Once the temperature is obtained, elastic stress analysis 

procedures can then be employed to complete the 

problem solution.

• For us, the temperature distribution is usually a given 

condition.

Heat Conduction Equation
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General Formulation of Thermoelasticity





Formulation of Thermoelasticity – 2D 

• Plane stress thermoelastic Hooke’s law

7



� � � � � �� � �
Formulation of Thermoelasticity�±2D �‡Combined plane �W�K�H�U�P�R�H�O�D�V�W�L�F���+�R�R�N�H�¶�V���O�D�Z

3

�‡Define two material constants that are 0.lated to ��8







• Solution of the Airy Stress Function

•



• Consider the directional derivative of the Airy Stress 

Function along the boundary normal
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• where t is the unit tangent vector and F is the resultant 

boundary force.
• For many applications, the BCs are 

simply expressed in terms of stresses.

• For the case of zero surface tractions:
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• For simply connected regions, a steady 

temperature distribution with zero 

boundary tractions will not affect the 

in-plane stress field.

Stress Function Formulation without Body Forces
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Displacement Formulation – 2D 

•



• Stress/Traction Boundary Conditions 
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Displacement Formulation – 2D 

• Displacement Boundary Conditions 
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Displacement Potential Formulation – 2D 

• Navier’s (governing) equations without body forces

•







Thermal Stresses in an Elastic Thin
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• For a >> b, we may again ask Saint-Venant for help.

• Replace the parabolic surface traction with an equivalent 

(uniformly distributed) surface load.

• As a result, the homogeneous Airy Stress Function

• Total stresses become
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• Determine the temperature variation from heat conduction 

and energy equation, if not given.

• Under either stress or displacement formulation, identify a 

particular solution due to temperature effects to the 

governing equation (the Beltrami-



Polar Coordinate

• Strain-



••
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• Axi-symmetric solution: T = T(r)

Polar Coordinate – Displacement Formulation
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Thermal Stresses in an Annular Circular Plate

• After dropping the logarithmic 

term, the stress formulation gives

� �3
22 2

d
d ,

dr r

C E
C Tr r r

r r rT

D
V V V � �  ³

• Zero tractions on boundaries

• The displacement solution is
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