Thermoelasticity



Outline

« Heat Conduction Equation

e General 3-D Formulation

e Combined Plane Hooke’s Law

« Stress Compatibility and Aliry Stress Function
* Displacement






Heat Conduction Equation

e [or zero heat sources and steady state, the heat onduction
becomes Laplace equation
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« With appropriate thermal BCs, 1.e. specified
temperature or heat flux, the temperature field can be
determined independent of the stress-field calculations.

e Once the temperature Is obtained, elastic stress analysis

procedures can then be employed to complete the

problem solution.

» For us, the temperature distribution is usually a given
condition.




General Formulation of Thermoelasticity







Formulation of Thermoelasticity — 2D

* Plane stress thermoelastic Hooke’s law













 Solution of the Airy Stress Function




Stress Function Formulation without Body Forces

« Consider the directional derivative of the Airy Stress
Function along the boundary normal
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« where t is the unit tangent vector and F is the resultant
boundary force.

* For many applications, the BCs are
simply expressed in terms of stresses.

* For the case of zero surface tractions: "=
d\/an O \ C —
 For simply connected regions, a steady=

temperature distribution with zero
boundary tractions will not affect the
In-plane stress field.




Displacement Formulation — 2D




Displacement Formulation — 2D

o Stress/Traction Boundary Conditions

 Displacement Boundary Conditions
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Displacement Potential Formulation — 2D

* Navier’s (governing) equations without body forces
















e For a >> b, we may again ask Saint-\Venant for help.
» Replace the parabolic surface traction with an equivalent

(uniformly distributed) surface load.
€ As a result, the homogeneous Airy Stress Function
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» Determine the temperature variation from heat conduction
and energy equation, if not given.

 Under either stress or displacement formulation, identify a
particular solution due to temperature effects to the

governing equation (the Beltrami-



Polar Coordinate

e Strain-















Polar Coordinate — Displacement Formulation

o Axi-symmetric solution: T = T(r)

29






Thermal Stresses in an Annular Circular Plate

 After dropping the logarithmic
term, the stress formulation gives
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e Zero tractions on boundaries

e The displacement solution is
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